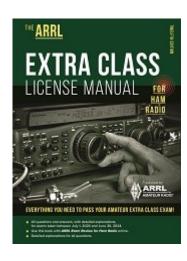


#### The ARRL Extra Class License Course

All You Need to Pass Your Extra Class Exam

LEVEL 3: Extra




For use with *The ARRL Extra Class License Manual*, 12th Edition



Discovering the Excitement of Ham Radio

# Extra License Manual and other resources



http://www.arrl.org/shop/Licensing-Education-and-Training/



Discovering the Excitement of Ham Radio

### Why are received spread spectrum signals resistant to interference?

- A. Signals not using the spread spectrum algorithm are suppressed in the receiver
- B. The high power used by a spread spectrum transmitter keeps its signal from being easily overpowered
- C. The receiver is always equipped with a digital blanker
- D. If interference is detected by the receiver it will signal the transmitter to change frequencies

E8D01 ECLM Page (8 - 15)



Discovering the Excitement of Ham Radio

### Why are received spread spectrum signals resistant to interference?

- A. Signals not using the spread spectrum algorithm are suppressed in the receiver
- B. The high power used by a spread spectrum transmitter keeps its signal from being easily overpowered
- C. The receiver is always equipped with a digital blanker
- D. If interference is detected by the receiver it will signal the transmitter to change frequencies
- (A) E8D01 ECLM Page (8 15)



Discovering the Excitement of Ham Radio

# What spread spectrum communications technique uses a high speed binary bit stream to shift the phase of an RF carrier?

- A. Frequency hopping
- B. Direct sequence
- C. Binary phase-shift keying
- D. Phase compandored spread-spectrum

E8D02 ECLM Page (8 - 16)



Discovering the Excitement of Ham Radio

# What spread spectrum communications technique uses a high speed binary bit stream to shift the phase of an RF carrier?

- A. Frequency hopping
- B. Direct sequence
- C. Binary phase-shift keying
- D. Phase compandored spread-spectrum
- (B) E8D02 ECLM Page (8 16)



Discovering the Excitement of Ham Radio

# How does the spread spectrum technique of frequency hopping work?

- A. If interference is detected by the receiver it will signal the transmitter to change frequencies
- B. If interference is detected by the receiver it will signal the transmitter to wait until the frequency is clear
- C. A binary bit stream is used to shift the phase of an RF carrier very rapidly in a pseudorandom sequence
- D. The frequency of the transmitted signal is changed very rapidly according to a pseudorandom sequence also used by the receiving station

E8D03 ECLM Page (8 - 16)



Discovering the Excitement of Ham Radio

# How does the spread spectrum technique of frequency hopping work?

- A. If interference is detected by the receiver it will signal the transmitter to change frequencies
- B. If interference is detected by the receiver it will signal the transmitter to wait until the frequency is clear
- C. A binary bit stream is used to shift the phase of an RF carrier very rapidly in a pseudorandom sequence
- D. The frequency of the transmitted signal is changed very rapidly according to a pseudorandom sequence also used by the receiving station
- (D) E8D03 ECLM Page (8 16)



Discovering the Excitement of Ham Radio

# What is the primary effect of extremely short rise or fall time on a CW signal?

- A. More difficult to copy
- B. The generation of RF harmonics
- C. The generation of key clicks
- D. Limits data speed

E8D04 ECLM Page (8 - 9)



Discovering the Excitement of Ham Radio

# What is the primary effect of extremely short rise or fall time on a CW signal?

- A. More difficult to copy
- B. The generation of RF harmonics
- C. The generation of key clicks
- D. Limits data speed
- (C) E8D04 ECLM Page (8 9)



Discovering the Excitement of Ham Radio

### What is the most common method of reducing key clicks?

- A. Increase keying waveform rise and fall times
- B. Low-pass filters at the transmitter output
- C. Reduce keying waveform rise and fall times
- D. High-pass filters at the transmitter output

E8D05 ECLM Page (8 - 9)



Discovering the Excitement of Ham Radio

### What is the most common method of reducing key clicks?

- A. Increase keying waveform rise and fall times
- B. Low-pass filters at the transmitter output
- C. Reduce keying waveform rise and fall times
- D. High-pass filters at the transmitter output
- (A) E8D05 ECLM Page (8 9)



Discovering the Excitement of Ham Radio

### What is the advantage of including parity bits in ASCII characters?

- A. Faster transmission rate
- B. The signal can overpower interfering signals
- C. Foreign language characters can be sent
- D. Some types of errors can be detected

E8D06 ECLM Page (8 - 8)



Discovering the Excitement of Ham Radio

### What is the advantage of including parity bits in ASCII characters?

- A. Faster transmission rate
- B. The signal can overpower interfering signals
- C. Foreign language characters can be sent
- D. Some types of errors can be detected
- (D) E8D06 ECLM Page (8 8)



Discovering the Excitement of Ham Radio

# What is a common cause of overmodulation of AFSK signals?

- A. Excessive numbers of retries
- B. Ground loops
- C. Bit errors in the modem
- D. Excessive transmit audio levels

E8D07 ECLM Page (8 - 14)



Discovering the Excitement of Ham Radio

# What is a common cause of overmodulation of AFSK signals?

- A. Excessive numbers of retries
- B. Ground loops
- C. Bit errors in the modem
- D. Excessive transmit audio levels
- (D) E8D07 ECLM Page (8 14)



Discovering the Excitement of Ham Radio

# What parameter evaluates distortion of an AFSK signal caused by excessive input audio levels?

- A. Signal to noise ratio
- B. Baud rate
- C. Repeat Request Rate (RRR)
- D. Intermodulation Distortion (IMD)

E8D08 ECLM Page (8 - 14)



Discovering the Excitement of Ham Radio

# What parameter evaluates distortion of an AFSK signal caused by excessive input audio levels?

- A. Signal to noise ratio
- B. Baud rate
- C. Repeat Request Rate (RRR)
- D. Intermodulation Distortion (IMD)
- (D) E8D08 ECLM Page (8 14)



Discovering the Excitement of Ham Radio

# What is considered an acceptable maximum IMD level for an idling PSK signal?

A. +10 dB

B. +15 dB

C. -20 dB

D. -30 dB

E8D09 ECLM Page (8 - 14)



Discovering the Excitement of Ham Radio

# What is considered an acceptable maximum IMD level for an idling PSK signal?

A. +10 dB

B. +15 dB

C. -20 dB

D. -30 dB

(D) E8D09 ECLM Page (8 - 14)



Discovering the Excitement of Ham Radio

# What are some of the differences between the Baudot digital code and ASCII?

- A. Baudot uses 4 data bits per character, ASCII uses 7 or 8; Baudot uses 1 character as a letters/figures shift code, ASCII has no letters/figures code
- B. Baudot uses 5 data bits per character, ASCII uses 7 or 8; Baudot uses 2 characters as letters/figures shift codes, ASCII has no letters/figures shift code
- C. Baudot uses 6 data bits per character, ASCII uses 7 or 8; Baudot has no letters/figures shift code, ASCII uses 2 letters/figures shift codes
- D. Baudot uses 7 data bits per character, ASCII uses 8; Baudot has no letters/figures shift code, ASCII uses 2 letters/figures shift codesE8D10 ECLM Page (8 7)



Discovering the Excitement of Ham Radio

# What are some of the differences between the Baudot digital code and ASCII?

- A. Baudot uses 4 data bits per character, ASCII uses 7 or 8; Baudot uses 1 character as a letters/figures shift code, ASCII has no letters/figures code
- B. Baudot uses 5 data bits per character, ASCII uses 7 or 8; Baudot uses 2 characters as letters/figures shift codes, ASCII has no letters/figures shift code
- C. Baudot uses 6 data bits per character, ASCII uses 7 or 8; Baudot has no letters/figures shift code, ASCII uses 2 letters/figures shift codes
- D. Baudot uses 7 data bits per character, ASCII uses 8; Baudot has no letters/figures shift code, ASCII uses 2 letters/figures shift codes
- (B) E8D10 ECLM Page (8 7)



Discovering the Excitement of Ham Radio

### What is one advantage of using ASCII code for data communications?

- A. It includes built-in error correction features
- B. It contains fewer information bits per character than any other code
- C. It is possible to transmit both upper and lower case text
- D. It uses one character as a shift code to send numeric and special characters

E8D11 ECLM Page (8 - 7)



Discovering the Excitement of Ham Radio

### What is one advantage of using ASCII code for data communications?

- A. It includes built-in error correction features
- B. It contains fewer information bits per character than any other code
- C. It is possible to transmit both upper and lower case text
- D. It uses one character as a shift code to send numeric and special characters
- (C) E8D11 ECLM Page (8 7)